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ABSTRACT 

 

Viewers tend to focus into specific regions of interest in an 

image. Therefore visual attention is one of the major aspects 

to understand the overall Quality of Experience (QoE) and 

user perception. Visual attention models have emerged in 

the recent past to predict user attention in images, videos 

and 3D video. However, the usage of these models in 

quality assessment and quality improvement has not been 

thoroughly  investigated to date. This paper investigates 3D 

visual attention model driven quality assessment and 

improvement methods for 3D video services. Moreover, a 

visual saliency driven error protection mechanism is 

proposed and evaluated in this paper. Both objective and 

subjective results show that the proposed method has 

significant potential to provide improved 3D QoE for end 

users. 

 

Index Terms— Visual saliency, visual attention, visual 

attention model, 3D visual attention model 

 

1. INTRODUCTION 

 

Viewers tend to focus into specific regions of interest in an 

image, hence visual attention is one of the major aspects to 

understand Quality of Experience (QoE) and user 

perception. Eye tracking experiments are widely used to 

investigate user eye gaze positions during consumption of 

visual information. The collected eye movement data are 

then post-processed to obtain Fixation Density Maps (FDM) 

or saliency maps. There are two major approaches to 

analyze user visual attention, namely: free viewing task (i.e., 

bottom-up approach) and task oriented (top-bottom 

approach). The former approach is driven by low level 

image features such as spatial and temporal frequencies. The 

top-bottom approach is driven by the task.  Several other 

factors influence visual attention such as sociocultural 

background, context, duration, etc. Visual attention models 

have emerged in the recent past to predict user attention in 

images, videos and 3D video [1-3]. These attention models 

predict user eye movements based on low level image 

features such as spatial frequency, edge information, etc. 

Visual attention models can therefore be used in image 

processing applications (e.g. post processing, image quality 

evaluation, image retargeting).   

The attention of users during 3D viewing can be 

influenced by several factors including spatial/temporal 

frequencies, depth cues, conflicting depth cues, etc. A 

comprehensive analysis of visual attention in 3D, and of the 

weaknesses of existing models and their usage is discussed 

in [4]. The studies on visual attention in 2D/3D images 

found out that the behaviors of viewers during 2D viewing 

and 3D viewing are not always identical. For instance, the 

study in [5] for 2D/3D images has shown that added depth 

information increases the number of fixations, eye 

movement throughout the image and shorter and faster 

saccades. This observation is also complemented by the 

investigation carried out by Häkkinen et al. [6], which 

showed that eye movement during 3D viewing is more 

distributed. In contrast to these observations, Ramasamy et 

al.’s study in [7] found out that the spread of fixation points 

are more confined in 3D viewing than 2D viewing. These 

observations have direct influences in how we perceive 3D 

video. Therefore, effective 3D video quality evaluation and 

3D QoE enhancement schemes could be designed based on 

these observations. The proposed image processing methods 

in the literature exploit these visual attention patterns and 

models to measure and improve 3D QoE. 

Modeling visual attention in 2D viewing is driven by 

spatial and temporal frequencies of the image as suggested 

by many studies [8][9]. However, for 3D images/video, 

depth cues need to be added to the existing image features in 

order to generate a robust 3D saliency map. Most of the 

reported 3D visual attention models in the literature [10][11] 

are therefore based on scene depth information in addition 

to motion and spatial characteristics. 3D visual attention 

models can be divided into two main categories, as shown 

below: 

 Depth weighted 3D saliency model (see Figure 1(a)); 

 Depth saliency based 3D saliency model (see Figure 

1(b)). 

 

The depth weighted model weighs the generated 2D 

saliency model based on the depth information in order to 

obtain the 3D visual saliency map. The second method 

generates two visual saliency maps: the first one for 2D 

image information and the second one for the corresponding 

depth map of the scene (see Figure 1(b)). Then both saliency 

maps are combined into one 3D saliency map based on the 

selected weights as described in (1). 



In this paper, the 3D saliency model developed based 

on the depth saliency model is employed to identify visually 

salient areas [1]. This model considers both current image 

information and prior knowledge. However, this 3D 

saliency model does not take into account the temporal 

activity of the scene.  

   
 

(a) 

 
(b) 

 

Figure 1. 3D saliency models, (a) Depth weighted 3D saliency model and 
(b) Depth saliency based 3D saliency model 
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where w1 and w2 are weights assigned for the depth saliency 

model (i.e., SMDepth) and 2D saliency model (i.e., SM2D) 

respectively.  

  In this paper, we discuss how we could exploit 3D 

visual attention models to measure and improve 3D video 

quality. Moreover, a visual saliency based error protection 

mechanism is proposed and tested. The following two 

subsections briefly discuss how we could exploit 3D visual 

attention models to measure and improve 3D video 

perception and 3D QoE in general. 

1.1. Visual attention models for quality evaluation 

 

There are still unanswered questions such as whether quality 

assessment is analogous to attentional quality assessment 

and also how we could integrate attention mechanisms into 

the design of QoE assessment methodologies. 2D 

image/video quality assessment presented in [12], 

investigated the impact of different regions of interest on 

image quality evaluation. However, a thorough study has 

not been conducted to date in order to identify the 

relationship between 3D image/video attention models and 

3D image/video quality evaluation. The COST action 

presentation in [13] identifies three main approaches to 

integrate visual attention into image/video quality evaluation 

(see Figure 2). Similar to the integrated model described 

above, attentive areas identified by visual attention studies 

can be utilized to extract image features which can be used 

to design No-Reference (NR) and Reduced-Reference (RR) 

quality metrics for real-time 3D video application. The use 

of extracted features to design RR 3D image/video quality 

metrics have been undertaken in previous research 

[14][15][16][17]. Furthermore, the use of 3D visual saliency 

information could be used to further reduce the amount of 

side-information for real-time quality evaluation.   

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Integration of visual attention model in quality evaluation [13]; 

(a) Direct combination (b) Divided integration and (c) Integrated 
combination  

 

1.2. Visual attention models for quality improvement 

 

Since visual attention models can predict the highly 

attentive areas of an image or video, these can be integrated 

into video coding at the source-end. The proposed ROI-

based encoding methods for 2D/3D video have shown 

improved quality at a given bitrate compared to 
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conventional encoding methods [18][19]. For instance the 

ROI based encoding method proposed and evaluated in [19] 

shows that by protecting combined edges of colour plus 

depth based 3D video, the overall quality of the rendered 

views can be improved. This study also incorporates an 

Unequal Error Protection (UEP) mechanism to protect 

different image regions. However, visual attention based 

ROI encoding methods have not been reported for 3D video 

applications to date. Therefore in this paper we investigate 

how we could incorporate 3D visual attention models to 

efficiently encode 3D video based on ROI coding and 

protect it over unreliable wireless channels. The proposed 

3D visual saliency based UEP mechanism is simulated and 

tested. 

This paper is organized as follows. Section 2 describes 

the proposed error protection mechanism. Results and 

discussion are presented in Section 3. Section 4 concludes 

the paper. 

 

2. PROPOSED ERROR PROTECTION METHOD 

 

The proposed error protection mechanism starts at the 

source end before encoding. The graphical illustration of the 

proposed mechanism is shown in Figure 3 at the end of the 

paper. The barrier sequence from the NAMA3DS1-

COSPAD1 3D HD dataset is used for this illustration [20]. 

The 3D visual saliency model described in [1] is employed 

to identify the visual saliency region for given left and right 

stereoscopic image sequence. This 3D saliency model 

generates two saliency maps:  

 2D saliency map (Figure 3 (c)) 

 Depth saliency map (Figure 3 (d)) 

 

These two saliency maps are then converted into binary 

images by thresholding the original saliency maps (see 

Figure 3 (e) and (f)). Subsequently, these two saliency maps 

are combined to form a 3D saliency map (g) using chosen 

weights. In this case w1 and w2 of (1) are selected as 0.5. 

However, optimum weights could be found based on further 

experimentation. Figure 3 (h) shows the visually salient 

region identified in the original left image. 

Once the visually salient region is identified as described 

above, a Region of Interest (ROI) map is generated and 

passed to the encoder. Sample identified ROIs are shown in 

Figure 4. ROI 0 represents the attentive area identified by 

the 3D visual attention model. The visually less salient 

region is represented as ROI 1 in Figure 4. These ROI maps 

will be used to encode left and right video with region of 

interest encoding of H.264/AVC. The ROI map is 

transmitted to the decoder via the Picture Parameter Set 

(PPS) of H.264/AVC bit-stream. The update frequency of 

the ROI map can be selected based on the available 

bandwidth and sequence characteristics. For instance, if the 

motion activity of the video is significant, we could send 

frequent ROI updates based on the 3D saliency model.  

Once ROIs are encoded, application layer channel 

coding (error correction codes) is used in the proposed 

method to protect the ROIs. An Unequal Error Protection 

(UEP) mechanism is employed to protect ROI 0 and ROI 1 

unequally. For instance, ROI 0 (highly attentive area) is 

protected by a lower channel code rate (higher redundancy 

and protection) and the ROI 1 is protected using a higher 

channel code rate (lower redundancy and protection). When 

this 3D video is sent over an unreliable communication 

channel, information of attentive region (ROI 0) will be 

recovered with a high probability of success due to stronger 

error correction codes whereas information of the less 

attentive region (ROI 1) will be subjected to more 

uncorrectable errors. As a result, the attentive area will be 

reconstructed with less errors compared to the less attentive 

area identified by the 3D visual attention model. This would 

result in improved quality compared to equally protected 3D 

video.  

The performance of the proposed method is compared 

with an Equally Error Protection (EEP) mechanism at the 

same bitrate. The results and discussions are presented in 

Section 3. 

           

 
Figure 4. Region of Interest (ROI) based on visual saliency information  

 

3. RESULTS AND DISCUSSIONS 

 

The barrier 3D HD video sequence from NAMA3DS1-

COSPAD1 database [20] is compressed using the 

H.264/AVC compression standard with Quantization 

Parameter (QP) = 30 to obtain good image quality at a 

reasonable bitrate. A sixteen-seconds sequence (400 frames 

at 25 fps) is considered for the experiment. Simulcast 

encoding approach (i.e., two parallel encoders) is employed 

to encode both left and right image sequences. They were 

encoded using the IPPP…IPPP… frame sequence format to 

provide a high quality 3D video stream. An I frame is 

encoded at every 1 second interval. In this study, the ROI 

selection frequency is set to 1 second (i.e., a separate ROI 

map is generated by every 1 second using the 3D saliency 

model). Therefore, a 3D saliency map is generated for every 

second using the 3D saliency model described in [1]. 

However, during the initial experiments, it is observed that 

the ROI update frequency should be increased when the 



motion activity is high in the scene. Hence, the ROI update 

frequency is set to every 10 frames for the video segments 

which have high motion activity. A 3D saliency map is used 

to identify the saliency region of each image (i.e., ROI 0). 

The rest of the surrounding area (less attentive area) is 

marked as ROI 1. ROI 0 and ROI 1 of a sample image are 

illustrated in figure 3. For the 3D video sequence considered 

for the experiment, the average amount of visually attentive 

area (saliency region) is about 15% of the whole image. 

However, this increases up to 25% of the whole image after 

encoding, since most of the activities happen within this 

attentive region (ROI 0).  

We assume that our 3D video source is affected, due to 

transmission, by random packet losses, where losses occur 

with the same probability pL in the different portions of the 

stream. We assume pL = 20% when FEC is not applied. We 

adopt Reed Solomon (RS) coding at the application layer, 

where packets are inserted in a matrix in rows and coding is 

performed in columns. 

The adopted packet size is 1000 Bytes. In the case of 

equal error protection (EEP), we adopt the RS code (23,31), 

whereas in the case of unequal error protection (UEP) the 

ROI 0 containing visually saliency region is protected with 

an RS code (21,31) and the packets associated to the 

remaining part of the image (i.e., less attentive region, ROI 

1) are protected with an RS code (24,31). The channel 

coding rates are selected such that the overall bitrate after 

FEC is the same for both the Equal Error Protection (EEP) 

and UEP methods. With the aid of the considered codes, the 

packet loss ratio is reduced to 5% for the EEP case, whereas 

for the UEP case we achieve 1% packet loss rate for ROI 0 

(i.e., saliency information) and 7% PLR for ROI 1 (non-

salient region). Packets of the first and subsequent I frames 

are not subject to losses in order to decode all the frames of 

the bit-streams smoothly. In order to obtain average results, 

simulations are run for several times. At the decoder, the 

missing packets are copied from the corresponding frames 

of the previous time instance. 
Table 1: Average left and right image quality 

Video Segment 
Average Left and Right Image quality (PSNR/dB) 

Encoded No Error Protection EEP UEP 

Segment 1 36.23 29.42 35.49 35.33 

Segment 2 36.23 26.72 35.16 35.30 

Segment 3 36.20 25.67 32.48 33.02 

Segment 4 36.47 23.81 30.09 31.67 

Overall 36.31 26.17 33.31 33.83 

 

The objective quality results achieved with the proposed 

UEP and reference methods (i.e., EEP, no protection) are 

listed in Table 1 and Figure 5. In addition, the quality of the 

encoded sequences is also shown. Results are presented for 

four segments of 100 frames (where a separate ROI map is 

sent for every 25 frames) and for the long sequence of 400 

frames in general. It is evident that, when no error protection 

is deployed, the resultant average quality is significantly 

low. However, when UEP or EEP methods are used the 

resultant average stereo image quality is high. The proposed 

UEP method outperforms the reference EEP method in all 

the cases. This suggests that the proposed UEP method can 

achieve improved results with a high quality saliency region 

when 3D video is transmitted over unreliable networks. The 

quality improvement is significant towards the latter part of 

the sequence where high motion activity occurs. This shows 

that the proposed method is effective when the highly 

dynamic objects come within the visually saliency region of 

the video. 

In order to evaluate the true user perception, subjective 

quality tests are performed using 15 expert subjects. 

Subjective experiments are carried out in both IRCCyN Lab, 

University of Nantes, France and WMN Research Group, 

Kingston University-London, UK. HD 3D displays with 

polarized and active shutter glasses are used for subjective 

experiments. The DSIS method is used to record subject’s 

opinions. Results are presented in Table 2. The results show 

a clear improvement with the proposed UEP method 

compared to the EEP method. Therefore, it is evident that by 

protecting visually attentive region compared to visually 

less attentive region, we could improve the 3D QoE for 3D 

video transmission over unreliable networks. 

Figure 5. Average left and right image quality 

 
Table 2: Subjective results 

Method/Sequence MOS 

Original sequence 4.75 

Encoded sequence 4.50 

No error protection  2.75 

EEP 3.50 

UEP 3.75 

 
Even though preliminary results are promising, further 

experiments will be carried out to improve the performance 

of the proposed method. For instance, we did the tests with 

high ROI update frequency. However, this may not be 

enough for highly dynamic sequences where objects are 

moving rapidly. Furthermore, the used 3D visual attention 



model does not incorporate the motion activity of the scene. 

Therefore, it fails to identify attentive area based on the 

temporal activity and this may cause the loss of more 

packets in highly dynamic regions of the image. Integrating 

temporal cues into the 3D visual attention model will enable 

us to obtain an effective 3D saliency map and improved 

QoE with the proposed method. 

 

4. CONCLUSION 

 

The paper elaborates on the use of 3D visual attention 

details in quality measurements and improvements. The 

proposed visual saliency driven UEP method achieve better 

quality compared to EEP method at the same bitrate. 

Therefore, visual attention driven error protection 

mechanisms as described in this paper will enable us to 

deliver 3D video over unreliable communication channels 

with significantly improved 3D QoE. 
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Figure 3. Sample image from the Barrier sequence, (a) The original left image; (b) corresponding depth map (generated based in optical flow analysis); (c) 
2D saliency map based on the left image; (d)Depth saliency map based on the depth image; (e) binary 2D saliency map (after applying a threshold); (f) 

binary depth saliency map (after applying a threshold); (g), predicted 3D saliency map (binary); and (h) the identified saliency area of the left image 


